Water, common name applied to the liquid state of the hydrogen-oxygen compound H2O. The ancient philosophers regarded water as a basic element typifying all liquid substances. Scientists did not discard that view until the latter half of the 18th century. In 1781 the British chemist Henry Cavendish synthesized water by detonating a mixture of hydrogen and air. However, the results of his experiments were not clearly interpreted until two years later, when the French chemist Antoine Laurent Lavoisier proved that water was not an element but a compound of oxygen and hydrogen. In a scientific paper presented in 1804, the French chemist Joseph Louis Gay-Lussac and the German naturalist Alexander von Humboldt demonstrated jointly that water consisted of two volumes of hydrogen to one of oxygen, as expressed by the present-day formula H2O.
Almost all the hydrogen in water has an atomic weight of 1. The American chemist Harold Clayton Urey discovered in 1932 the presence in water of a small amount (1 part in 6000) of so-called heavy water, or deuterium oxide (D2O); deuterium is the hydrogen isotope with an atomic weight of 2. In 1951 the American chemist Aristid Grosse discovered that naturally occurring water contains also minute traces of tritium oxide (T2O); tritium is the hydrogen isotope with an atomic weight of 3. See Atom.
PROPERTIES
Pure water is an odorless, tasteless liquid. It has a bluish tint, which may be detected, however, only in layers of considerable depth. Under standard atmospheric pressure (760 mm of mercury, or 760 torr); the freezing point of water is 0° C (32° F) and its boiling point is 100° C (212° F). Water attains its maximum density at a temperature of 4° C (39° F) and expands upon freezing. Like most other liquids, water can exist in a supercooled state; that is, it may remain a liquid although its temperature is below its freezing point. Water can easily be cooled to about -25° C (-13° F) without freezing, either under laboratory conditions or in the atmosphere itself. Supercooled water will freeze if it is disturbed, if the temperature is lowered further, or if an ice crystal or other particle is added to it. Its physical properties are used as standards to define the calorie and specific and latent heat (see Heat) and in the metric system for the original definition of the unit of mass, the gram.
Water is one of the best-known ionizing agents (see Ionization). Because most substances are somewhat soluble in water, it is frequently called the universal solvent. Water combines with certain salts to form hydrates. It reacts with metal oxides to form acids (see Acids and Bases). It acts as a catalyst in many important chemical reactions.
OCCURRENCE
Water is the only substance that occurs at ordinary temperatures in all three states of matter, that is, as a solid, a liquid, and a gas. As a solid, or ice, it is found as glaciers and ice caps, on water surfaces in winter, as snow, hail, and frost, and as clouds formed of ice crystals. It occurs in the liquid state as rain clouds formed of water droplets, and on vegetation as dew; in addition, it covers three-quarters of the surface of the earth in the form of swamps, lakes, rivers, and oceans. As gas, or water vapor, it occurs as fog, steam, and clouds. Atmospheric vapor is measured in terms of relative humidity, which is the ratio of the quantity of vapor actually present to the greatest amount possible at a given temperature. See Atmosphere; Cloud; Fog; Humidity; Rain.
Water occurs as moisture in the upper portion of the soil profile, in which it is held by capillary action to the particles of soil. In this state, it is called bound water and has different characteristics from free water See Soil; Soil Management. Under the influence of gravity, water accumulates in rock interstices beneath the surface of the earth as a vast groundwater reservoir supplying wells and springs and sustaining the flow of some streams during periods of drought.
Water occurs as moisture in the upper portion of the soil profile, in which it is held by capillary action to the particles of soil. In this state, it is called bound water and has different characteristics from free water See Soil; Soil Management. Under the influence of gravity, water accumulates in rock interstices beneath the surface of the earth as a vast groundwater reservoir supplying wells and springs and sustaining the flow of some streams during periods of drought.
WATER IN LIFE
Water is the major constitutent of living matter. From 50 to 90 percent of the weight of living organisms is water. Protoplasm, the basic material of living cells, consists of a solution in water of fats, carbohydrates, proteins, salts, and similar chemicals. Water acts as a solvent, transporting, combining, and chemically breaking down these substances. Blood in animals and sap in plants consist largely of water and serve to transport food and remove waste material. Water also plays a key role in the metabolic breakdown of such essential molecules as proteins and carbohydrates. This process, called hydrolysis, goes on continually in living cells.
NATURAL WATER CYCLE
Hydrology is the science concerned with the distribution of water on the earth, its physical and chemical reactions with other naturally occurring substances, and its relation to life on earth; the continuous movement of water between the earth and the atmosphere is known as the hydrological cycle. Under several influences, of which heat is predominant, water is evaporated from both water and land surfaces and is transpired from living cells. This vapor circulates through the atmosphere and is precipitated in the form of rain or snow. See Meteorology.
On striking the surface of the earth, the water follows two paths. In amounts determined by the intensity of the rain and the porosity, permeability, thickness, and previous moisture content of the soil, one part of the water, termed surface runoff, flows directly into rills and streams and thence into oceans or landlocked bodies of water; the remainder infiltrates into the soil. A part of the infiltrated water becomes soil moisture, which may be evaporated directly or may move upward through the roots of vegetation to be transpired from leaves. The portion of the water that overcomes the forces of cohesion and adhesion in the soil profile percolates downward, accumulating in the so-called zone of saturation to form the groundwater reservoir, the surface of which is known as the water table. Under natural conditions, the water table rises intermittently in response to replenishment, or recharge, and then declines as a result of continuous drainage into natural outlets such as springs. See Spring.
Hydrology is the science concerned with the distribution of water on the earth, its physical and chemical reactions with other naturally occurring substances, and its relation to life on earth; the continuous movement of water between the earth and the atmosphere is known as the hydrological cycle. Under several influences, of which heat is predominant, water is evaporated from both water and land surfaces and is transpired from living cells. This vapor circulates through the atmosphere and is precipitated in the form of rain or snow. See Meteorology.
On striking the surface of the earth, the water follows two paths. In amounts determined by the intensity of the rain and the porosity, permeability, thickness, and previous moisture content of the soil, one part of the water, termed surface runoff, flows directly into rills and streams and thence into oceans or landlocked bodies of water; the remainder infiltrates into the soil. A part of the infiltrated water becomes soil moisture, which may be evaporated directly or may move upward through the roots of vegetation to be transpired from leaves. The portion of the water that overcomes the forces of cohesion and adhesion in the soil profile percolates downward, accumulating in the so-called zone of saturation to form the groundwater reservoir, the surface of which is known as the water table. Under natural conditions, the water table rises intermittently in response to replenishment, or recharge, and then declines as a result of continuous drainage into natural outlets such as springs. See Spring.
No comments:
Post a Comment